Services
identify novel antibiotics.
Our proprietary HTP-BCP platform can screen libraries on an industrial scale and provide preliminary activity and MOA information for all of the hits.
One of the biggest challenges in natural product research is knowing which strains or extracts contain interesting bioactive compounds. BCP can determine which microbial strains produce interesting activities even before extracts are created, thereby focusing the labor intensive extraction and fractionation efforts on those few strains and extracts with proven potential. BCP can then determine the MOA of crude natural product extracts to identify those that have interesting bioactivities; in fact we routinely find multiple activities in crude extracts. Finally, BCP can guide purification of the desired activities, without wasting effort on undesired compounds or inactive fractions.
pathogens treated with antibiotics.
We provide high resolution images of bacterial pathogens treated with antimicrobials and directly observe cell killing in time-lapse microscopy, providing compelling visual evidence of drug effectiveness that can be used for a variety of purposes.
newly discovered antimicrobial compounds.
Our BCP platform can be used to rapidly identify and study the mechanism of action (MOA) for compounds active against Gram positive or Gram negative bacteria.
Determine how compounds
enter bacterial cells.
We have developed assays for measuring the uptake of fluorescently labeled compounds into bacterial cells, mammalian cells, or a combination of the two, to determine a compound’s relative binding affinity for each cell type.
antimicrobial binding.
Knowing where a compound binds to a microbial cell can provide important information about MOA. Linnaeus can determine the subcellular location of binding (e.g., outer membrane, inner membrane, DNA, cell pole, cytosolic, or other cellular location) of fluorescently labeled compounds.
